did some work on the paper
This commit is contained in:
		| @@ -183,6 +183,8 @@ by the following relation: | |||||||
| \end{equation} | \end{equation} | ||||||
| \end{definition} | \end{definition} | ||||||
|  |  | ||||||
|  | Where every $o_i$ acts on the $i$-th qbit. | ||||||
|  |  | ||||||
| One can show that any stabilizer state can be realized as a graph state (for instance in \cite{schlingenmann2001}). | One can show that any stabilizer state can be realized as a graph state (for instance in \cite{schlingenmann2001}). | ||||||
|  |  | ||||||
| \subsection{Operations on the Graph State} | \subsection{Operations on the Graph State} | ||||||
| @@ -219,6 +221,34 @@ than a single qbit gate. | |||||||
| %    \ifend | %    \ifend | ||||||
| %\end{struktogramm} | %\end{struktogramm} | ||||||
|  |  | ||||||
|  |  | ||||||
|  | \subsubsection{Measurement of a Qbit} | ||||||
|  |  | ||||||
|  | Note that the $Z$ gate is diagonal in the $\{\ket{1}_s,\ket{0}_s\}$ basis with eigen values $1, -1$. | ||||||
|  | This gives a simple expression for the projector on the $\ket{0}_s$ and $\ket{1}_s$ state of qbit $k$: | ||||||
|  |  | ||||||
|  | \begin{equation} | ||||||
|  |     \tilde{P^{v}_{k}} := \frac{I_k + (-1)^vZ_k}{2}, v \in {0, 1} | ||||||
|  | \end{equation} | ||||||
|  |  | ||||||
|  | This projector trivially commutes with any non-operand vertex operator yielding for a state | ||||||
|  |  | ||||||
|  |  | ||||||
|  | \begin{equation} | ||||||
|  |     \begin{aligned} | ||||||
|  |         \ket{\psi} := \left(\bigotimes\limits_{\{i,j\} \in E} CZ_{i,j}\right) \ket{+} \\ | ||||||
|  |         \tilde{P^{v}_{k}} \left(\bigotimes\limits_{i=0}{n-1} o_i\right)\ket{\psi} &=   | ||||||
|  |         \left(\bigotimes\limits_{i=0,i \ne k}{n-1} o_i\right) \tilde{P^{v}_{k}} o_k \ket{\psi} \\ | ||||||
|  |         &= \left(\bigotimes\limits_{i=0,i \ne k}{n-1} o_i\right) o_ko_k^\dagger \tilde{P^{v}_{k}} o_k \ket{\psi} \\ | ||||||
|  |         &= \left(\bigotimes\limits_{i=0,i \ne k}{n-1} o_i\right) o_k = \frac{I_k + (-1)^v o_k^\dagger Z_ko_k}{2} \ket{\psi} | ||||||
|  |     \end{aligned} | ||||||
|  | \end{equation} | ||||||
|  |  | ||||||
|  | Now $o_k$ stabilizes $P$, as it is an element of $C_L$, meaning that $o_k^\dagger Z_k o_k \in \{-1,1\}\{X_k, Y_k, Z_k\}$ | ||||||
|  | Which gives a new projector on a Pauli matrix: $P_k := o_k^\dagger Z_ko_k$ | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| \subsection{Graph Storage} | \subsection{Graph Storage} | ||||||
|  |  | ||||||
| One of the gread advantages of simulating in the graph formalism is a great increase  | One of the gread advantages of simulating in the graph formalism is a great increase  | ||||||
|   | |||||||
		Reference in New Issue
	
	Block a user