diff --git a/thesis/chapters/introduction.tex b/thesis/chapters/introduction.tex index 407ca85..09b8933 100644 --- a/thesis/chapters/introduction.tex +++ b/thesis/chapters/introduction.tex @@ -1,3 +1,26 @@ +% vim: ft=tex \section{Introduction} +Quantum computing has been a rapidly growing field over the last years with +many companies and institutions working on building and using quantum computers +\cite{ibmq}\cite{intelqc}\cite{microsoftqc}\cite{dwavesys}\cite{lrzqc}\cite{heise25_18}. +One important topic in this research is quantum error correction +\cite{nielsen_chuang_2010}\cite{gottesman2009}\cite{gottesman1997}\cite{shor1995} +that will allow the execution of arbitrarily long quantum circuits. One +important class of quantum error correction strategies are stabilizer codes +\cite{gottesman2009}\cite{gottesman1997} that can be simulated exponentially +faster than general quantum circuits +\cite{gottesman_aaronson2008}\cite{CHP}\cite{andersbriegel2005}. +One particularely efficient way to simulate stabilizer states is the graphical +representation \cite{andersbriegel2005} that has been studied extensively in +the context of both quantum error correction and quantum information theory +\cite{schlingenmann2001}\cite{dahlberg_ea2019}\cite{vandennest_ea2004}\cite{hein_eisert_briegel2008}. +This paper describes the development of a quantum computing simulator +using both the usual dense state vector representation for a general state +and a graphical representation for stabilizer states. After giving some introduction +to quantum computing some basic properties of stabilizer states and their +dynamics are given. Using this the graphical representation is introduced +and some operations on the graphical states are explained. Following is +a chapter describing the implementation of these techniques and some performance +analysis. diff --git a/thesis/main.bib b/thesis/main.bib index 16382fd..20b772e 100644 --- a/thesis/main.bib +++ b/thesis/main.bib @@ -184,3 +184,50 @@ note={https://github.com/QISKit/openqasm}, year=2019 } +@online{ + ibmq, + url={https://www.ibm.com/quantum-computing/learn/what-is-quantum-computing/}, + urldate={19.09.2019}, + title={IBM Q - What is quantum computing?}, + author={IBM}, + year=2019 +} +@online{ + intelqc, + url={https://newsroom.intel.com/press-kits/quantum-computing/#gs.2s0dux}, + urldate={19.09.2019}, + title={Intel Press Kit: Quantum Computing}, + author={Intel}, + year=2019 +} +@online{ + microsoftqc, + url={https://www.microsoft.com/en-us/quantum/default.aspx}, + urldate={19.09.2019}, + title={Quantum Computing | Microsoft}, + author={Microsoft}, + year=2019 +} +@online{ + dwavesys, + url={https://www.dwavesys.com/quantum-computing}, + urldate={19.09.2019}, + title={Quantum Computing | D-Wave Systems}, + author={D-Wave Systems Inc} +} +@online{ + lrzqc, + url={https://www.lrz.de/wir/newsletter/2019-08/#LRZ_bereit_fuer_bayerische_Quantechnologie}, + urldate={19.09.2019}, + title={LRZ-Newsletter Nr. 08/2019 vom 01.08.2019}, + author={S. Vieser}, + year=2019 +} +@online{ + heise25_18, + url={https://www.heise.de/select/ct/2018/25/1544250249368810}, + urldate={19.09.2019}, + title={Europa entfesselt Quanten-Power}, + author={Arne Grävemeyer}, + year=2018 +} diff --git a/thesis/main.tex b/thesis/main.tex index 5aabfa9..ee507b9 100644 --- a/thesis/main.tex +++ b/thesis/main.tex @@ -1,4 +1,4 @@ -\documentclass[a4paper,12pt,draft]{scrartcl} +\documentclass[a4paper,draft,12pt]{scrartcl} \usepackage[utf8]{inputenc} \usepackage{graphicx} \usepackage{amssymb, amsthm}