From 5dde04c2ca80acd077fdfc8a30814f67d5113b92 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Daniel=20Kn=C3=BCttel?= Date: Mon, 24 Feb 2020 12:06:33 +0100 Subject: [PATCH] some stuff for numerical solution --- presentation/spin_chain/hamiltonian.py | 3 ++- presentation/spin_chain/time_evolution.py | 20 ++++++++++++++++++-- 2 files changed, 20 insertions(+), 3 deletions(-) diff --git a/presentation/spin_chain/hamiltonian.py b/presentation/spin_chain/hamiltonian.py index c33a6c6..8274bee 100644 --- a/presentation/spin_chain/hamiltonian.py +++ b/presentation/spin_chain/hamiltonian.py @@ -11,6 +11,7 @@ def Mi(nqbits, i, M): result = np.kron(result, I) else: result = np.kron(result, M) + return result @@ -23,5 +24,5 @@ def H_field(nqbits, g): return sum(field_terms) def H(nqbits, g): - return (-H_interaction + H_field).real + return (-H_interaction(nqbits) + H_field(nqbits, g)).real diff --git a/presentation/spin_chain/time_evolution.py b/presentation/spin_chain/time_evolution.py index 9c4f639..712d65f 100644 --- a/presentation/spin_chain/time_evolution.py +++ b/presentation/spin_chain/time_evolution.py @@ -5,6 +5,8 @@ from pyqcs import State, sample from transfer_matrix import T_time_slice from hamiltonian import H +from scipy.linalg import expm + nqbits = 4 g = 0.5 N = 400 @@ -17,6 +19,7 @@ measure = 0b10 results_qc = [] +results_np = [] print() for t in np.arange(0, t_stop, delta_t): # QC simulation @@ -30,14 +33,27 @@ for t in np.arange(0, t_stop, delta_t): results_qc.append(result[0] / n_sample) # Simulation using matrices - #np_ + np_zero_state = np.zeros(2**nqbits) + np_zero_state[0] = 1 + + T = expm(-1j * t * H(nqbits, g)) + #for Tv in T: + # print(np.sum(np.abs(Tv))) + # assert np.isclose(np.sum(np.abs(Tv)), 1) + np_state = T.dot(np_zero_state) + amplitude = np.sum(np.abs(np_state[[False if (i & measure) else True for i in range(2**nqbits)]])) + results_np.append(amplitude) + print(f"simulating... {int(t/t_stop*100)} % ", end="\r") print() print("done.") -plt.plot(np.arange(0, t_stop, delta_t), results_qc) +h0, = plt.plot(np.arange(0, t_stop, delta_t), results_qc, label=f"Quantum computing {n_sample} samples") +h1, = plt.plot(np.arange(0, t_stop, delta_t), results_np, label="Classical simulation using explicit transfer matrix") plt.xlabel("t") plt.ylabel(r"$|0\rangle$ probability amplitude for second spin") plt.title(f"{nqbits} site spin chain with g={g} coupling to external field") +plt.legend(handles=[h0, h1]) + plt.show()