some work on performance stuff

This commit is contained in:
Daniel Knüttel 2020-02-10 20:10:51 +01:00
parent 05231fd5ae
commit 58265fc8de
6 changed files with 130 additions and 36 deletions

View File

@ -1,6 +1,7 @@
from collections import deque
import matplotlib.pyplot as plt
import numpy as np
import json
from pyqcs import State, H, X, S, CZ
from pyqcs.graph.state import GraphState
@ -35,13 +36,14 @@ def test_scaling_circuits(state_factory
if __name__ == "__main__":
nstart = 400
nstop = 1600
nstop = 800
step = 50
ncircuits = 250
ncircuits = 50
nqbits0 = 100
nqbits1 = 50
seed = 0xdeadbeef
np.random.seed(0xdeadbeef)
np.random.seed(seed)
results_graph0 = test_scaling_circuits(GraphState.new_zero_state
, nstart
, nstop
@ -49,7 +51,7 @@ if __name__ == "__main__":
, nqbits0
, ncircuits
, repeat=10)
np.random.seed(0xdeadbeef)
np.random.seed(seed)
results_graph1 = test_scaling_circuits(GraphState.new_zero_state
, nstart
, nstop
@ -58,19 +60,21 @@ if __name__ == "__main__":
, ncircuits
, repeat=10)
h0 = plt.errorbar(results_graph0[:, 0], results_graph0[:, 2], results_graph0[:, 3]
, label=f"Graphical Simulator $N_q={nqbits0}$ Qbits"
, marker="^"
, color="black")
h1 = plt.errorbar(results_graph1[:, 0], results_graph1[:, 2], results_graph1[:, 3]
, label=f"Graphical Simulator $N_q={nqbits1}$ Qbits"
, marker="o"
, color="black")
np.savetxt("circuit_scaling_graph0.csv", results_graph0)
print("saved results0 to circuit_scaling_graph0.csv")
np.savetxt("circuit_scaling_graph1.csv", results_graph1)
print("saved results1 to circuit_scaling_graph1.csv")
plt.legend(handles=[h0, h1])
plt.xlabel("Number of gates in circuit")
plt.ylabel("Execution time per circuit [s]")
plt.title(f"Execution Time for random Circuits")
meta = {
"nstart": 400
, "nstop": 1800
, "step": 50
, "ncircuits": 50
, "nqbits0": 100
, "nqbits1": 50
, "seed": 0xdeadbeef}
with open("circuit_scaling_meta.json", "w") as fout:
json.dump(meta, fout)
print("saved meta to circuit_scaling_meta.json")
#plt.show()
plt.savefig("scaling_circuits.png", dpi=400)

View File

@ -1,6 +1,7 @@
from collections import deque
import matplotlib.pyplot as plt
import numpy as np
import json
from pyqcs import State, H, X, S, CZ
from pyqcs.graph.state import GraphState
@ -31,18 +32,19 @@ def test_scaling_qbits(state_factory
if __name__ == "__main__":
nstart = 4
nstop = 19
ncircuits = 250
nstop = 16
ncircuits = 50
ngates_per_qbit = 100
seed = 0xdeadbeef
np.random.seed(0xdeadbeef)
np.random.seed(seed)
results_naive = test_scaling_qbits(State.new_zero_state
, nstart
, nstop
, ngates_per_qbit
, ncircuits
, repeat=10)
np.random.seed(0xdeadbeef)
np.random.seed(seed)
results_graph = test_scaling_qbits(GraphState.new_zero_state
, nstart
, nstop
@ -50,19 +52,18 @@ if __name__ == "__main__":
, ncircuits
, repeat=10)
h0 = plt.errorbar(results_naive[:, 0], results_naive[:, 2], results_naive[:, 3]
, label=f"Dense Vector Simulator $N_c={int(results_naive[:, 1][0])}$ circuits"
, marker="o"
, color="black")
h1 = plt.errorbar(results_graph[:, 0], results_graph[:, 2], results_graph[:, 3]
, label=f"Graphical Simulator $N_c={int(results_graph[:, 1][0])}$ circuits"
, marker="^"
, color="black")
np.savetxt("qbit_scaling_naive.csv", results_naive)
print("saved naive results to qbit_scaling_naive.csv")
np.savetxt("qbit_scaling_graph.csv", results_graph)
print("saved graph results to qbit_scaling_graph.csv")
plt.legend(handles=[h0, h1])
plt.xlabel("Number of Qbits $N_q$")
plt.ylabel("Execution time per circuit [s]")
plt.title(f"Execution Time for ${ngates_per_qbit}\\times N_q$ Gates with random Circuits (rescaled)")
meta = {"nstart": nstart
, "nstop": nstop
, "ncircuits": ncircuits
, "ngates_per_qbit": ngates_per_qbit
, "seed": seed}
with open("qbit_scaling_meta.json", "w") as fout:
json.dump(meta, fout)
print("saved meta data to qbit_scaling_meta.json")
#plt.show()
plt.savefig("Figure_1.png", dpi=400)

View File

@ -0,0 +1,29 @@
from collections import deque
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import json
matplotlib.rcParams.update({'errorbar.capsize': 2})
results_graph0 = np.genfromtxt("circuit_scaling_graph0.csv")
results_graph1 = np.genfromtxt("circuit_scaling_graph1.csv")
with open("circuit_scaling_meta.json") as fin:
meta = json.load(fin)
h0 = plt.errorbar(results_graph0[:, 0], results_graph0[:, 2], results_graph0[:, 3]
, label=f"Graphical Simulator $N_q={meta['nqbits0']}$ Qbits"
, marker="^"
, color="black")
h1 = plt.errorbar(results_graph1[:, 0], results_graph1[:, 2], results_graph1[:, 3]
, label=f"Graphical Simulator $N_q={meta['nqbits1']}$ Qbits"
, marker="o"
, color="black")
plt.legend(handles=[h0, h1])
plt.xlabel("Number of gates in circuit")
plt.ylabel("Execution time per circuit [s]")
plt.title(f"Execution Time for random Circuits")
plt.show()
#plt.savefig("scaling_circuits_linear.png", dpi=400)

View File

@ -0,0 +1,29 @@
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import json
matplotlib.rcParams.update({'errorbar.capsize': 2})
results_naive = np.genfromtxt("qbit_scaling_naive.csv")
results_graph = np.genfromtxt("qbit_scaling_graph.csv")
with open("qbit_scaling_meta.json") as fin:
meta = json.load(fin)
h0 = plt.errorbar(results_naive[:, 0], results_naive[:, 2], results_naive[:, 3]
, label=f"Dense Vector Simulator $N_c={int(results_naive[:, 1][0])}$ circuits"
, marker="o"
, color="black")
h1 = plt.errorbar(results_graph[:, 0], results_graph[:, 2], results_graph[:, 3]
, label=f"Graphical Simulator $N_c={int(results_graph[:, 1][0])}$ circuits"
, marker="^"
, color="black")
plt.legend(handles=[h0, h1])
plt.xlabel("Number of Qbits $N_q$")
plt.ylabel("Execution time per circuit [s]")
plt.title(f"Execution Time for ${meta['ngates_per_qbit']}\\times N_q$ Gates with random Circuits (rescaled)")
plt.show()
#plt.savefig("scaling_qbits_linear.png", dpi=400)

View File

@ -0,0 +1,31 @@
import matplotlib.pyplot as plt
import matplotlib
import numpy as np
import json
matplotlib.rcParams.update({'errorbar.capsize': 2})
results_naive = np.genfromtxt("qbit_scaling_naive.csv")
results_graph = np.genfromtxt("qbit_scaling_graph.csv")
with open("qbit_scaling_meta.json") as fin:
meta = json.load(fin)
h0 = plt.errorbar(results_naive[:, 0], results_naive[:, 2], results_naive[:, 3]
, label=f"Dense Vector Simulator $N_c={int(results_naive[:, 1][0])}$ circuits"
, marker="o"
, color="black")
h1 = plt.errorbar(results_graph[:, 0], results_graph[:, 2], results_graph[:, 3]
, label=f"Graphical Simulator $N_c={int(results_graph[:, 1][0])}$ circuits"
, marker="^"
, color="black")
plt.yscale("log")
plt.legend(handles=[h0, h1])
plt.xlabel("Number of Qbits $N_q$")
plt.ylabel("Execution time per circuit [s]")
plt.title(f"Execution Time for ${meta['ngates_per_qbit']}\\times N_q$ Gates with random Circuits (rescaled)")
plt.show()
#plt.savefig("scaling_qbits_log.png", dpi=400)

Binary file not shown.

Before

Width:  |  Height:  |  Size: 211 KiB

After

Width:  |  Height:  |  Size: 204 KiB