From 434285f9feaefee4768e78b9f1a9574e84b8df71 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Daniel=20Kn=C3=BCttel?= Date: Tue, 7 Apr 2020 11:40:55 +0200 Subject: [PATCH] some fixes --- thesis/chapters/implementation.tex | 9 +++-- thesis/chapters/stabilizer.tex | 55 +++++++++++++++--------------- 2 files changed, 35 insertions(+), 29 deletions(-) diff --git a/thesis/chapters/implementation.tex b/thesis/chapters/implementation.tex index 4b94478..0b726c6 100644 --- a/thesis/chapters/implementation.tex +++ b/thesis/chapters/implementation.tex @@ -11,6 +11,10 @@ amplitudes. Full access to the states (including intermediate states) has been prioritized over execution speed. To keep the simulation speed as high as possible under these constraints some parts are implemented in \lstinline{C}. +This document is based on \lstinline{pyqcs} \lstinline{2.1.0} that +can be downloaded under \\ +\href{https://github.com/daknuett/PyQCS/releases/tag/v2.1.0}{https://github.com/daknuett/PyQCS/releases/tag/v2.1.0}. + \section{Dense State Vector Simulation} \subsection{Representation of Dense State Vectors} @@ -40,7 +44,7 @@ Python states also have a NumPy \lstinline{cdouble} array that stores the quantum mechanical state. Using NumPy arrays has the advantage that access to the data is simple and safe while operations on the states can be implemented in \lstinline{C} \cite{numpy_ufunc} providing a considerable speedup -\ref{ref:benchmark_ufunc_py}. +(see \ref{ref:benchmark_ufunc_py}). This quantum mechanical state is the component vector in integer basis therefore it has $2^n$ components. Storing those components is acceptable in @@ -58,7 +62,7 @@ what qbits have been measured. Using ufuncs has the great advantage that managing memory is done by NumPy and an application programmer just has to implement the logic of the function. Because ufuncs are written in \lstinline{C} they provide a considerable speedup compared to an implementation -in Python \ref{ref:benchmark_ufunc_py}. +in Python (see \ref{ref:benchmark_ufunc_py}). The logic of gates is usually easy to implement using the integer basis. The example below implements the Hadamard gate \ref{ref:singleqbitgates}: @@ -162,6 +166,7 @@ Out[2]: (0.7071067811865476+0j)*|0b0> \section{Graphical State Simulation} \subsection{Graphical States} +\label{ref:impl_g_states} For the graphical state $(V, E, O)$ the list of vertices $V$ can be stored implicitly by demanding $V = \{0, ..., n - 1\}$. This leaves two components that have to be stored: diff --git a/thesis/chapters/stabilizer.tex b/thesis/chapters/stabilizer.tex index 598cc15..96a9d55 100644 --- a/thesis/chapters/stabilizer.tex +++ b/thesis/chapters/stabilizer.tex @@ -188,9 +188,8 @@ a set of stabilizers. and $\sqrt{-iX} = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} 1 & -i \\ -i & 1 \end{array}\right)$. - Also $C_L$ is generated by $\sqrt{iZ}$, $\sqrt{-iX}$. When - using $\sqrt{iZ}, \sqrt{-iX}$ the product has a length not greater - than $5$. } + When using $\sqrt{iZ}, \sqrt{-iX}$ the product has a length + not greater than $5$. } \item{$C_n$ can be generated using $C_L$ and $CZ$ or $CX$.} \end{enumerate} \end{theorem} @@ -251,7 +250,7 @@ result of the measurement. \label{lemma:stab_measurement} Let $J := \left\{ S^{(i)} \middle| [g_a, S^{(i)}] \neq 0\right\} \neq \{\}$ and $J^c := \left\{S^{(i)} \middle| S^{(i)} \notin J \right\}$. When measuring $\frac{I + (-1)^s g_a}{2} $ $s=1$ -and $s=0$ are obtained with probability $\frac{1}{2}$ and after choosing a $j +and $s=0$ are obtained with probability $\frac{1}{2}$ and after choosing a $S^{(j)} \in J$ the new state $\ket{\psi'}$ is stabilized by \cite{nielsen_chuang_2010} \begin{equation} \langle \{(-1)^s g_a\} \cup \left\{S^{(i)} S^{(j)} \middle| S^{(i)} \in J \setminus \{S^{(j)}\} \right\} \cup J^c \rangle. @@ -259,7 +258,7 @@ and $s=0$ are obtained with probability $\frac{1}{2}$ and after choosing a $j \end{lemma} \begin{proof} - As $g_a$ is a Pauli operator and $S^{(i)} \in J$ are multi-local Pauli + As $g_a$ is a Pauli operator and $S^{(i)} \in J$ are multilocal Pauli operators, $S^{(i)}$ and $g_a$ anticommute. Choose a $S^{(j)} \in J$. Then \begin{equation} @@ -327,17 +326,17 @@ commute is trivial for $\{a,b\} \notin E$. If $\{a, b\} \in E$ \begin{aligned} K_G^{(a)} K_G^{(b)} &= X_a \left(\prod\limits_{i \in n_a} Z_i\right) X_b \left(\prod\limits_{j\in n_b} Z_j\right)\\ - &= X_a \left(\prod\limits_{i \in \setminus \{b\}} Z_i\right) Z_b - X_b \left(\prod\limits_{j\in n_b\setminus \{b\}} Z_j\right) Z_a\\ + &= X_a \left(\prod\limits_{i \in n_a\setminus \{b\}} Z_i\right) Z_b + X_b \left(\prod\limits_{j\in n_b\setminus \{a\}} Z_j\right) Z_a\\ &= X_a Z_b X_b Z_a - \left(\prod\limits_{j\in n_b\setminus \{b\}} Z_j\right) - \left(\prod\limits_{i \in \setminus \{b\}} Z_i\right)\\ + \left(\prod\limits_{j\in n_b\setminus \{a\}} Z_j\right) + \left(\prod\limits_{i \in n_a\setminus \{b\}} Z_i\right)\\ &= -X_b Z_b X_a Z_a - \left(\prod\limits_{j\in n_b\setminus \{b\}} Z_j\right) - \left(\prod\limits_{i \in \setminus \{b\}} Z_i\right)\\ + \left(\prod\limits_{j\in n_b\setminus \{a\}} Z_j\right) + \left(\prod\limits_{i \in n_a\setminus \{b\}} Z_i\right)\\ &= X_b Z_a X_a Z_b - \left(\prod\limits_{j\in n_b\setminus \{b\}} Z_j\right) - \left(\prod\limits_{i \in \setminus \{b\}} Z_i\right)\\ + \left(\prod\limits_{j\in n_b\setminus \{a\}} Z_j\right) + \left(\prod\limits_{i \in n_a \setminus \{b\}} Z_i\right)\\ &= K_G^{(b)} K_G^{(a)}.\\ \end{aligned} \end{equation} @@ -481,7 +480,7 @@ that will be used later \cite{andersbriegel2005}. \begin{aligned} n_a' &= n_a \\ n_j' &= n_j, \hbox{ if } j \notin n_a\\ - n_j' &= n_j \Delta n_a, \hbox{ if } j \in n_a + n_j' &= n_j \Delta n_a \setminus \{j\}, \hbox{ if } j \in n_a \end{aligned} \end{equation} \end{lemma} @@ -524,7 +523,7 @@ that will be used later \cite{andersbriegel2005}. &= Z_j X_a X_j Z_a \left(\prod\limits_{l \in D} Z_l\right) \left(\prod\limits_{l \in F}Z_l\right) \left(\prod\limits_{l \in F}Z_l\right) \\ - &= Z_j X_a X_j Z_a \left(\prod\limits_{l \in ((F\cup D) \setminus (F\cap D))} Z_L\right) + &= Z_j X_a X_j Z_a \left(\prod\limits_{l \in ((F\cup D) \setminus (F\cap D))} Z_l\right) \left(\prod\limits_{l \in F}Z_l\right) \\ &= K_{G'}^{(a)} K_{G'}^{(j)} \\ &= K_{G}^{(a)} K_{G'}^{(j)} @@ -541,7 +540,7 @@ that will be used later \cite{andersbriegel2005}. Because $\left\{K_G^{(i)} \middle| i \notin n_a\right\} \cup \left\{S^{(i)} \middle| i\in n_a\right\}$ and $\left\{K_G^{(i)} \middle| i \notin n_a\right\} \cup \left\{K_{G'}^{(i)} \middle| i\in n_a \right\}$ are both $n$ -commuting multi-local Pauli operators where the $S^{(i)}$ can be generated from +commuting multilocal Pauli operators where the $S^{(i)}$ can be generated from the $K_{G'}^{(i)}$ and $\ket{\bar{G}'}$ is a $+1$ eigenstate of $K_{G'}^{(j)}$ $\langle\left\{K_G^{(i)} \middle| i \notin n_a\right\} \cup \left\{K_{G'}^{(i)} \middle| i\in n_a \right\}\rangle$ are the stabilizers of $\ket{\bar{G}'}$. @@ -602,31 +601,33 @@ immediately: The great advantage of this representation of a stabilizer state is its space requirement: Instead of storing $n^2$ Pauli matrices only some vertices (which -often are implicit), the edges and some vertex operators ($n$ matrices) have to -be stored. Theorem \ref{thm:cl24} will improve this even further: Instead of $n$ -matrices it is sufficient to store $n$ integers representing the vertex -operators. +are implicit when choosing $V=\{0, ..., n-1\}$), the edges and some vertex +operators ($n$ matrices) have to be stored. Theorem \ref{thm:cl24} will improve +this even further: Instead of $n$ matrices it is sufficient to store $n$ +integers representing the vertex operators. \begin{theorem} \label{thm:cl24} $C_L$ has $24$ degrees of freedom disregarding a global phase \cite{andersbriegel2005}. \end{theorem} -\begin{proof} It is clear that $\forall a \in C_L$ a is a group isomorphism $P +\begin{proof} It is clear that any $a \in C_L$ is a group isomorphism $P \rightarrow P$: $apa^\dagger a p' a^\dagger = a pp'a^\dagger$. Therefore $a$ will preserve the (anti-)commutator relations of $P$. Further note - that $Y = iXZ$, so one has to consider the anti-commutator relations of + that $Y = iXZ$, so one has to consider the (anti-)commutator relations of $X,Z$ only. As the transformations are unitary they preserve eigenvalues, so $X$ can be mapped to $\pm X, \pm Y, \pm Z$ which gives $6$ degrees of freedom. - Furthermore the image of $Z$ has to anti-commute with the image of $X$ so + Furthermore the image of $Z$ has to anti-commute with the image of $X$ therefore $Z$ has four possible images under the transformation. This gives another -$4$ degrees of freedom and a total of $24$. \end{proof} +$4$ degrees of freedom and a total of $24$. +\end{proof} From now on $C_L = \langle H, S \rangle$ (disregarding a global phase) will be used. One can show (by construction) that $H, S$ generate a possible choice of $C_L$, as do $\sqrt{-iX}, \sqrt{-iZ}$ which is required in one specific -operation on graph states \cite{andersbriegel2005}. +operation on graph states \cite{andersbriegel2005}. All elements of $C_L$ can +be found in \ref{ref:impl_g_states}. \begin{equation} S = \left(\begin{array}{cc} 1 & 0 \\ 0 & i \end{array}\right) @@ -783,13 +784,13 @@ the graph after a measurement is described in \cite{hein_eisert_briegel2008}. Recalling \ref{ref:meas_stab} it is clear that one has to compute the commutator of the observable $g_a = Z_a$ with the stabilizers to get the -probability amplitudes which is a expensive computation in theory. It is +probability amplitudes which is an expensive computation in theory. It is possible to simplify the problem by pulling the observable behind the vertex operators. For this consider the projector $P_{a,s} = \frac{I + (-1)^sZ_a}{2}$ \begin{equation} \begin{aligned} - P_{a,s} \ket{\psi} &= P_{a,s} \left(\prod\limits_{o_i \in O} o_i \right) \ket{\bar{G}} \\ + P_{a,s} \ket{G} &= P_{a,s} \left(\prod\limits_{o_i \in O} o_i \right) \ket{\bar{G}} \\ &= \left(\prod\limits_{o_i \in O \setminus \{o_a\}}o_i \right)P_a o_a \ket{\bar{G}} \\ &= \left(\prod\limits_{o_i \in O \setminus \{o_a\}}o_i \right) o_a o_a^\dagger P_a o_a \ket{\bar{G}} \\ &= \left(\prod\limits_{o_i \in O} o_i \right) o_a^\dagger P_a o_a \ket{\bar{G}} \\