some work on graph simulator theory
This commit is contained in:
parent
0e1044478b
commit
14fd2a29a2
|
@ -268,6 +268,9 @@ were derived from the vertex operator-free graph states.
|
||||||
as $X, Z$ anticommute and $Z\ket{1} = -1\ket{1}$.
|
as $X, Z$ anticommute and $Z\ket{1} = -1\ket{1}$.
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
These insights can be used to understand how measurement works on the vop-free graph state \cite{nielsen_chuang_2010}:
|
||||||
|
Consider a state $\ket{\psi}$ that is stabilized by $g_1, ... g_n$ and a hermitian $g$ that is to be measured.
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -91,3 +91,11 @@
|
||||||
author={Axel Dahlberg et al.},
|
author={Axel Dahlberg et al.},
|
||||||
note={https://arxiv.org/abs/1907.08024v1}
|
note={https://arxiv.org/abs/1907.08024v1}
|
||||||
}
|
}
|
||||||
|
@book{
|
||||||
|
nielsen_chuang_2010,
|
||||||
|
title={Quantum Computation and Quantum Information},
|
||||||
|
year=2010,
|
||||||
|
author={Michael A. Nielsen, Isaac L. Chuang},
|
||||||
|
publisher={CAMBRIDGE UNIVERSITY PRESS},
|
||||||
|
note={www.cambridge.org/9781107002173}
|
||||||
|
}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user