did some work on the vertex operator free state
This commit is contained in:
parent
d5ac6ec133
commit
0e1044478b
|
@ -240,11 +240,33 @@ were derived from the vertex operator-free graph states.
|
||||||
\end{equation}
|
\end{equation}
|
||||||
|
|
||||||
as $X$, $Z$ anticommute.
|
as $X$, $Z$ anticommute.
|
||||||
|
|
||||||
\end{proof}
|
\end{proof}
|
||||||
|
|
||||||
|
\begin{lemma}
|
||||||
|
\begin{equation}
|
||||||
|
\ket{\overline{G}} = \left(\prod\limits_{\{i,j\} \in E} CZ_{i,j} \right) \left(\prod\limits_{l \in V} H_l\right) \ket{0}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
In particular definitions \ref{def:vop_free_g_state} and \ref{def:graph_state} are consistent, when there are no
|
||||||
|
vertex operators on the graph state $\ket{G}$.
|
||||||
|
\end{lemma}
|
||||||
|
\begin{proof}
|
||||||
|
Let $\ket{+} := \left(\prod\limits_{l \in V} H_l\right) \ket{0}$ as before. Note that for any $X_i$ $X_i \ket{+} = +1 \ket{+}$.
|
||||||
|
Set $\ket{\tilde{G}} := \left(\prod\limits_{\{i,j\} \in E} CZ_{i,j} \right)\ket{+}$.
|
||||||
|
|
||||||
|
\begin{equation}
|
||||||
|
\begin{aligned}
|
||||||
|
K_G^{(i)} \ket{\tilde{G}} & = X_i \left(\prod\limits_{\{i,j\} \in E} Z_j\right)\left(\prod\limits_{\{l,j\} \in E} CZ_{l,j} \right) \ket{+} \\
|
||||||
|
& = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)X_i\prod\limits_{\{l,j\} \in E}\left( \ket{0}\bra{0}_j \otimes I_l + \ket{1}\bra{1}_j \otimes Z_l\right) \ket{+} \\
|
||||||
|
& = \left(\prod\limits_{\{i,j\} \in E} Z_j\right)\prod\limits_{\{l,j\} \in E}\left( \ket{0}\bra{0}_j \otimes I_l + (-1)^{\delta_{i,l}}\ket{1}\bra{1}_j \otimes Z_l\right) X_i \ket{+} \\
|
||||||
|
& = \prod\limits_{\{l,j\} \in E}\left( \ket{0}\bra{0}_j \otimes I_l + (-1)^{2\delta_{i,l}}\ket{1}\bra{1}_j \otimes Z_l\right) \ket{+} \\
|
||||||
|
& = \prod\limits_{\{l,j\} \in E}\left( \ket{0}\bra{0}_j \otimes I_l + \ket{1}\bra{1}_j \otimes Z_l\right) \ket{+} \\
|
||||||
|
& = +1 \ket{\tilde{G}}
|
||||||
|
\end{aligned}
|
||||||
|
\end{equation}
|
||||||
|
|
||||||
|
as $X, Z$ anticommute and $Z\ket{1} = -1\ket{1}$.
|
||||||
|
\end{proof}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user