diff --git a/presentation/main.tex b/presentation/main.tex index 7fba7b2..2f271df 100644 --- a/presentation/main.tex +++ b/presentation/main.tex @@ -97,6 +97,12 @@ { \begin{frame}{The Universal Quantum Computer} + \begin{itemize} + \item{A quantum system to which any unitary transformation can be applied.} + \item{Any quantum system with sufficiently small hilbert space can be simulated.} + \item{Quantum algorithms such as the Phase Estimation Algorithm have physical applications.} + \item{Applications in other fields: Quantum AI, breaking encryption (via prime factorization), Quantum Search, ...} + \end{itemize} \end{frame} } @@ -859,7 +865,7 @@ { \begin{frame}{Performance: Circuit Length on Graphical Representation} - \includegraphics[width=\textwidth]{../performance/scaling_circuits_linear.png} + \includegraphics[width=\textwidth]{../performance/regimes/scaling_circuits_linear.png} \end{frame} } @@ -948,7 +954,7 @@ \item{It would probably be enough to search for matrices $g_1, g_2$ for which \begin{equation} - CX_{1,2} (g_1 \otimes g_2) CX_{1,2} = g_1' \otimes g_2' + \langle CX_{1,2} (g_1 \otimes g_2) CX_{1,2}\rangle = \langle g_1' \otimes g_2'\rangle \end{equation} holds. The Pauli matrices are one group that fulfills this property. }