BCl Assembly Language

Contents

Commands, Small Arguments and Big Arguments
Built-In Commands

Comments

Marks

w NN P

Direct Input

Commands, Small Arguments and Big Arguments

A command in BCl Assembly is a word starting with an alphabetic character (a. . zA. . Z) following by a
sequence of alphanumeric characters (a. . zA. . Z0. . 9). This word will be converted to a 10bit opcode.

Embedded in the 16bits of a word there is also a 6bit small argument. If a command has no small
argument these bits will be zeroed. In the assembly the command will be only one word, for example:

cli

If the command has a small argument, the 6 bit will be filled with the small argument. In the assembly the
small argument is separated by one whitespace, for example:

inc rO

Any other arguments are stored in further words and have thus a width of 16bits. They are separated by
commas (,) from both the first and any other arguments. It is recommended to only add one more
argument.

Example for one big argument:
I di r0, Oxdead

It might be useful to have more arguments for other applications, like double precision floating points.
Example (not implemented):

| ddfi r0O, Oxdead, Oxbeef
; | oad doubl e precision floating point
; tor0 and r1

Built-In Commands

I di <sa>, <ba>

Load the value <ba> into register <sa>.
ld <sa>, <ba>

Load the value of the memory cell at <ba> into register <sa>.
st <sa>, <ba>

Store the value of register <sa> into the memory cell at <ba>.
inc <sa>

Increment the value of register <sa>.

dec <sa>
Decrement the value of register <sa>.
add| sub| mul | di v <sa>, <ba>

<sa> = <sa> +|-|*|/ <ba> where <sa> and <ba> are registers. Write the overflow into the
status register.

gt|ge|lt]|le|leq <sa>

Check if the value of register <sa> is >| >=| <| <=| == to 0. Set the status register to 1 if it
evaluates true, else to 0.

not

If the status register is 0 setitto 1, else set it to 0.
jmp <sa>

Set the program counter to the value of register <sa>.
call <sa>

Push the current program counter on the stack and set the program counter to the value of register
<sa>.

ret

Pop the previously pushed program counter from the stack.
st op

Write 1 into the shutdown register. This will cause the interpreter to halt.
cl

Write O into the status register.
cj np <sa>

If there not a O in the status register, j np <sa>, else continue execution.
ccall <sa>

Like cj np <sa> butwith cal | instead.

Comments

Comments start with a ; at the beginning of the line and end at the end of the line.

Marks

Marks represent a special location of the assembly code. The assembler keeps track of those marks and
they can be used as immediate input.

A mark is defined by a single word, starting with an alphabetic character (a..zA. .. Z) containing
alphanumeric characters and underscores (a.. zA. . Z0..9_) followed by a colon (:) and a newline
character.

Example:

Idi r0, this is a mark
Idi rl, Oxfefe
I di r2, Oxefef

this is a mark:
add r2, r1
; this will result in an infinite |oop.

jmp r0

Direct Input
The core instruction set contains the | di command that can be used to load data into a register directly.

The first (big) argument of this command is always a 16bit word. The assembler can automatically
generate the correct value if the argument is provided in the following ways:

Marks
The assembler inserts the absolute offset of the Mark.

A decimal value
The assembler inserts the value (i.e. | di r0, 12).
A hexadecimal value
If the argument starts with Ox the assembler will interpret the argument as hexadecimal.

A binary value
If the argument starts with Ob the assembler will interpret the value as binary.

A character
If the argument is either a single character surrounded by two ' characters or any unicode escape
sequence surrounded by ' characters the assembler will insert the integer representation.

	Commands, Small Arguments and Big Arguments
	Built-In Commands
	Comments
	Marks
	Direct Input

